Abstract

Classical fuzzy differential equations defined in terms of the Hukuhara derivative depend critically on the convexity of the level sets and result in expanding level sets. Here Hüllermeier's suggestion of defining fuzzy differential equations at each level set via differential inclusions is combined with ideas of Aubin on morphological equations, which allow nonlocal set evolution, to remove the assumption of fuzzy convexity and thus to allow fuzzy differential equations to be defined for non-convex level sets. This approach uses reachable sets as a more general form of set integration and, in contrast to the Aumann set integral, does not necessarily give rise to convex sets. The results presented in this paper are even more general since they concern fuzzy sets that need to be only closed without additional assumptions of convexity, compactness or even normality. In particular, an existence and uniqueness theorem is established under the assumption that the right-hand sides satisfy a one-sided Lipschitz condition rather than a much stronger Lipschitz condition. Fuzzy delay differential equations are also considered from this new perspective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.