Abstract
This paper is concerned with the nonlinear tracking control design for robot manipulators. In spite of the rich literature in the field, the problem has not yet been addressed adequately due to the lack of an effective control design. Using a descriptor fuzzy model-based framework, we propose a new approach to design a feedback-feedforward control scheme for robot manipulators in a general form. The goal is to guarantee a small level of an [Formula: see text] gain specification to improve the tracking performance while significantly reducing the numerical complexity for real-time implementation. Based on Lyapunov stability arguments, the control design is formulated as a convex optimization problem involving linear matrix inequalities. Numerical experiments performed with a high-fidelity manipulator benchmark model, embedded in the Simscape MultibodyTM environment, demonstrate the effectiveness of the proposed control solution over existing standard approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of the Institute of Measurement and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.