Abstract

We present \({\mathbf{FixIt}}{\mathbb{(ALC)}}\), a novel procedure for deciding knowledge base (KB) satisfiability in the Fuzzy Description Logic (FDL) \({\mathbb{ALC}}\). \({\mathbf{FixIt}}{\mathbb{(ALC)}}\) does not search for tree-structured models as in tableau-based proof procedures, but embodies a (greatest) fixpoint-computation of canonical models that are not necessarily tree-structured, based on a type-elimination process. Soundness, completeness and termination are proven and the runtime and space complexity are discussed. We give a precise characterization of the worst-case complexity of deciding KB satisfiability (as well as related terminological and assertional reasoning tasks) in \({\mathbb{ALC}}\) in the general case and show that our method yields a worst-case optimal decision procedure (under reasonable assumptions). To the best of our knowledge it is the first fixpoint-based decision procedure for FDLs, hence introducing a new class of inference procedures into FDL reasoning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.