Abstract
Abstract The theory of fuzzy deductive systems in RM algebras is developed. Various characterizations of fuzzy deductive systems are given. It is proved that the set of all fuzzy deductive systems of a RM algebra 𝒜 is a complete lattice (it is distributive if 𝒜 is a pre-BBBCC algebra). Some characterizations of Noetherian RM algebras by fuzzy deductive systems are obtained. In pre-BBBZ algebras, the fuzzy deductive system generated by a fuzzy set is constructed. Finally, closed fuzzy deductive systems are defined and studied. It is showed that in finite CI and pre-BBBZ algebras, every fuzzy deductive system is closed. Moreover, the homomorphic properties of (closed) fuzzy deductive systems are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.