Abstract

Although Deep Belief Network (DBN) has been applied to a wide range of practical scenarios, i.e. image classification, signal recognition, remaining useful life estimation, on account of its powerful high classification accuracy, but it has impossible interpretation of functionality (it is desirable to have a high level of interpretability for users also). In this paper, we propose a novel fuzzy DBN system called TSK_DBN which combines DBN and TSK fuzzy system. Firstly, the fuzzy clustering algorithm FCM is used to divide the input space, and the membership function of the fuzzy rule is defined. Then, the implicit feature is created by DBN. Finally, the consequent parameters of the fuzzy rule are determined by LLM(Least Learning Machine). The TSK_DBN fuzzy system has an adaptive mechanism, which can automatically adjust the depth until the optimal accuracy is achieved. The prominent character of the TSK_DBN system is that there is adaptive mechanism to regulate the depth of DBN to get a high accuracy. Several benchmark datasets have been used to empirically evaluate the efficiency of the proposed TSK_DBN in handling pattern classification tasks. The results show that the accuracy rates of TSK_DBN are at least comparable (if not superior) to DBN system with distinctive ability in providing explicit knowledge in the form of high interpretable rule base.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.