Abstract
This paper introduces a fuzzy control (FC) under spatially local averaged measurements (SLAMs) for nonlinear-delayed distributed parameter systems (DDPSs) represented by parabolic partial differential-difference equations (PDdEs), where the fast-varying time delay and slow-varying one are considered. A Takagi-Sugeno (T-S) fuzzy PDdE model is first derived to exactly describe the nonlinear DDPSs. Then, by virtue of the T-S fuzzy PDdE model and a Lyapunov-Krasovskii functional, an FC design under SLAMs, where the membership functions of the proposed FC law are determined by the measurement output and independent of the fuzzy PDdE plant model, is developed on basis of spatial linear matrix inequalities (SLMIs) to guarantee the exponential stability for the resulting closed-loop DDPSs. Lastly, a numerical example is offered to support the presented approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.