Abstract

Abstract This paper presents an effective approach for controlling chaos. First, a neural-network (NN) model is employed to approximate the chaotic system. Then, a linear differential inclusion (LDI) state-space representation is established for the dynamics of an NN model. Based on the LDI state-space representation, a fuzzy controller is proposed to tame the chaotic system. If the designed fuzzy controller cannot suppress the chaos, a high frequency signal, commonly called dithers, is simultaneously injected into the chaotic system. According to the relaxed method, an appropriate dither is introduced to steer the chaotic motion into a periodic orbit or a steady state. If the frequency of dither is high enough, the trajectory described by the dithered chaotic system and that of its corresponding mathematical model—the relaxed system can be made as close as desired. This phenomenon enables us to get a rigorous prediction of the dithered chaotic system’s behavior by obtaining the behavior of the relaxed system. Finally, a numerical example with simulations is given to illustrate the concepts discussed throughout this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.