Abstract

A methodology for the design of active car suspension systems is presented. The goal is to minimize vertical car body acceleration, for passenger comfort, and to avoid hitting suspension limits, for component lifetime preservation. A controller consisting of two control loops is proposed to attain this goal. The inner loop controls a nonlinear hydraulic actuator to achieve tracking of a desired actuation force. The outer loop implements a fuzzy logic controller which interpolates linear locally optimal controllers to provide the desired actuation force. Final controller parameters are computed via genetic algorithm-based optimization. A numerical example illustrates the design methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call