Abstract

In this paper, two new clustering algorithms based on fuzzy c-means for data with tolerance using kernel functions are proposed. Kernel functions which map the data from the original space into higher dimensional feature space are introduced into the proposed algorithms. Nonlinear boundary of clusters can be easily found by using the kernel functions. First, two clustering algorithms for data with tolerance are introduced. One is based on standard method and the other is on entropy-based one. Second, the tolerance in feature space is discussed taking account into soft margin algorithm in Support Vector Machine. Third, two objective functions in feature space are shown corresponding to two methods, respectively. Fourth, Karush-Kuhn-Tucker conditions of two objective functions are considered, respectively, and these conditions are re-expressed with kernel functions as the representation of an inner product for mapping from the original pattern space into a higher dimensional feature space. Fifth, two iterative algorithms are proposed for the objective functions, respectively. Through some numerical experiments, the proposed algorithms are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.