Abstract
Fuzzy c-means (FCM) algorithms have been shown effective for image segmentation. A series of enhanced FCM algorithms incorporating spatial information have been developed for reducing the effect of noises. This paper presents a robust FCM algorithm with non-local spatial information for image segmentation, termed as NLFCM. It incorporates two factors: one is the local similarity measure depending on the differences between the central pixel and its neighboring pixels in the image; the other is the non-local similarity measure depended on all pixels whose neighborhood configurations are similar to their neighborhood pixels. Furthermore, an adaptive weight is introduced to control the trade-off between local similarity measure and non-local similarity measure. The experimental results on synthetic images and real images under different types of noises show that the new algorithm is effective, and they are relatively independent to the types of noises.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Machine Learning and Cybernetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.