Abstract
Thvs paper presents SS-MVFCVSMdd, a semi-supervised multiview fuzzy clustering algorithm for relational data described by multiple dissimilarity matrices. SS-MVFCVSMdd provides a fuzzy partition in a predetermined number of fuzzy clusters, a representative for each fuzzy cluster, learns a relevance weight for each dissimilarity matrix, and takes into account pairwise constraints must-link and cannot-link, by optimizing a suitable objective function. Experiments with multiview real-valued data sets described by multiple dissimilarity matrices show the usefulness of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.