Abstract

AbstractIn this paper we propose a framework for fuzzy clustering of time series based on directional volatility spillovers. In the case of financial time series, detecting clusters of volatility spillovers provides insights into the market structure, which can be useful to both portfolio managers and policy makers. We measure directional—i.e. “From” and “To” the others—volatility spillovers with a methodology based on the generalized forecast-error variance decomposition. Then, we propose a weighted fuzzy clustering model for grouping stocks with a similar degree of directional spillovers. By using a weighted approach, we allow the algorithm to decide which dimension of spillover is more relevant for clustering. Moreover, a robust clustering model is also proposed to alleviate the effect of possible outlier stocks. We apply the proposed clustering model for the analysis of spillover effects in the Italian stock market.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.