Abstract
Flood forecasting is always a challenge in Taiwan, which has a subtropical climate and high mountains. This paper develops a fuzzy clustering neural network (FCNN), and implements this novel structure and reasoning process for flood forecasting. The FCNN has a hybrid learning scheme; the unsupervised learning scheme employs fuzzy min-max clustering to extract information from the input data. The supervised learning scheme uses linear regression to determine the weights of FCNN. The network, which learns from examples, is a hydrological processes theory-free estimator. Most of the parameters, weights of the network, are adjusted automatically during the network training. Only one parameter needs to be justified during constructing the flood forecasting models. The one-hour-ahead floods of the Lanyoung River during tropical storms are forecasted by the constructed models. Our results show that the simple but reliable model is capable of real time flood forecasting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.