Abstract

The success of fuzzy clustering heavily relies on the proper feature space constructed by the input data. For nonspherical and overlapped clusters, kernel fuzzy clustering is more effective because it finds more proper feature space compared to conventional fuzzy clustering. Unfortunately, poor scalability of kernel fuzzy clustering is induced by the construction of a kernel matrix. To solve the problem, random feature-based method was presented to approximate the kernel function. More interestingly, these features exposed in the approximate feature space are directly manipulable. Inspired by the architecture of functional-link neural network, to exploit more information from both the original data space and the approximate kernel space, a new feature space called cascaded feature space (CF) is constructed in this paper. By performing classical fuzzy c-means (FCM) in CF space, a new fuzzy clustering framework called FCM-CF is developed. To reduce computational complexity and perform FCM in CF space well, dimension reduction methods are adopted to generate two variants of FCM-CF. The experiment results of our proposed algorithms verify their superiority in comparison of other classical fuzzy clustering algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.