Abstract
Interpretability is the dominant feature of a fuzzy model in security-oriented fields. Traditionally fuzzy models based on expert knowledge have obtained well interpretation innately but imprecisely. Numerical data based fuzzy models perform well in precision but not necessarily in interpretation. To utilize the expert knowledge and numerical data in a fuzzy model synchronously, this paper proposed a hybrid fuzzy c-means (FCM) clustering algorithm and Fuzzy Network (FN) method-based model for prediction. The Mamdani rule-based structure of the proposed model is identified based on FCM algorithm from data and by expert-system method from expert knowledge, both of which are combined by FN method. Particle swarm optimization (PSO) algorithm is utilized to optimize the fuzzy set parameters. We tested the proposed model on 6 real datasets comparing the results with the ones obtained by using FCM algorithm. The results showed that our model performed best in interpretability, transparency, and accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.