Abstract

Federated learning (FL) is a promising technique to construct a solar power generation forecasting model based on data collected from local generators. However, a set of local generators (i.e., cluster) for FL should be carefully defined to construct a high-accuracy forecasting model. Herein, we propose a fuzzy clustered FL algorithm (FCFLA) where each local generator can be included in more than one cluster. In FCFLA, a local generator has its own membership degree representing its sense of belonging to a specific cluster. Based on this membership degree, FCFLA can generate the high-accuracy forecasting model by catching different characteristics of the data of local generators while addressing the training data shortage problem. Evaluation results demonstrate that FCFLA has the fastest convergence time in achieving the desired accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.