Abstract

SUMMARYEnergy is an extremely critical resource for battery‐powered wireless sensor networks (WSNs), thus making energy‐efficient protocol design a key challenging problem. However, uneven energy consumption is an inherent problem in WSNs caused by multi‐hop routing and many‐to‐one traffic pattern among sensors. In this paper, we therefore propose a new clustering method called fuzzy chessboard clustering (FFC), which is capable to overcome the bottleneck problem and addressing the uneven energy consumption problem in heterogeneous WSNs. We also propose an energy‐efficient routing method called artificial bee colony routing method (ABCRM) to find the optimal routing path for the heterogeneous WSNs. ABCRM seeks to investigate the problems of balancing energy consumption and maximization of network lifetime. To demonstrate the effectiveness of FCC‐ABCRM in terms of lessening end‐to‐end delay, balancing energy consumption, and maximization of heterogeneous network lifetime, we compare our method with three approaches namely, chessboard clustering approach, PEGASIS, and LEACH. Simulation results show that the network lifetime achieved by FCC‐ABCRM could be increased by nearly 25%, 45%, and 60% more than that obtained by chessboard clustering, PEGASIS, and LEACH, respectively. Copyright © 2013 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.