Abstract

For a nonlinear parabolic distributed parameter system (DPS), a fuzzy boundary sampled-data (SD) control method is introduced in this article, where distributed SD measurement and boundary SD measurement are respected. Initially, this nonlinear parabolic DPS is represented precisely by a Takagi-Sugeno (T-S) fuzzy parabolic partial differential equation (PDE) model. Subsequently, under distributed SD measurement and boundary SD measurement, a fuzzy boundary SD control design is obtained via linear matrix inequalities (LMIs) on the basis of the T-S fuzzy parabolic PDE model to guarantee exponential stability for closed-loop parabolic DPS by using inequality techniques and a LF. Furthermore, respecting the property of membership functions, we present some LMI-based fuzzy boundary SD control design conditions. Finally, the effectiveness of the designed fuzzy boundary SD controller is demonstrated via two simulation examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call