Abstract
Tropoelastin is the highly flexible monomer subunit of elastin, required for the resilience of the extracellular matrix in elastic tissues. To elicit biological signaling, multiple sites on tropoelastin bind to cell surface integrins in a poorly understood multifactorial process. We constructed a full atomistic molecular model of the interactions between tropoelastin and integrin αvβ3 using ensemble-based computational methodologies. Conformational changes of integrin αvβ3 associated with outside-in signaling were more frequently facilitated in an ensemble in which tropoelastin bound the integrin’s α1 helix rather than the upstream canonical binding site. Our findings support a model of fuzzy binding, whereby many tropoelastin conformations and defined sites cooperatively interact with multiple αvβ3 regions. This model explains prior experimental binding to distinct tropoelastin regions, domains 17 and 36, and points to the cooperative participation of domain 20. Our study highlights the utility of ensemble-based approaches in helping to understand the interactive mechanisms of functionally significant flexible proteins.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.