Abstract

Classic bilevel programming deals with two level hierarchical optimization problems in which the leader attempts to optimize his/her objective, subject to a set of constraints and his/her follower's solution. In modelling a real-world bilevel decision problem, some uncertain coefficients often appear in the objective functions and/or constraints of the leader and/or the follower. Also, the leader and the follower may have multiple conflicting objectives that should be optimized simultaneously. Furthermore, multiple followers may be involved in a decision problem and work cooperatively according to each of the possible decisions made by the leader, but with different objectives and/or constraints. Following our previous work, this study proposes a set of models to describe such fuzzy multi-objective, multi-follower (cooperative) bilevel programming problems. We then develop an approximation Kth-best algorithm to solve the problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.