Abstract

This study presents a new design method for a nonlinear variable-gain PID controller, the gains of which are described by a set of fuzzy rules. User-defined parameters are tuned using a genetic algorithm by minimizing the integral of absolute error and the weighted control input deviation index. It was observed in the experimental results on a continuous stirred tank reactor (CSTR) that the proposed controller provided performances: overshoot M p ≤1.25%, 2% settling time t s ≤1.71 s and IAE≤1.26 for set-point tracking, perturbance peak M peak ≤0.05%, 2% recovery time t rcy ≤3.97 s and IAE≤0.10 for disturbance rejection, and M peak ≤0.04%, t rcy ≤2.74 s and IAE≤0.04 for parameter changes. Comparison with those of two other methods revealed that the proposed controller not only led to less overshoot and shorter settling time for set-point tracking and less perturbance peak and shorter recovery time for disturbance rejection, but also showed less sensitivity to parameter changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call