Abstract
In model reference adaptive controller (MRACs), the adaptive gain of the controller is varied according to the process dynamic variation as it is directly related with the system stability. In MRAC, there is no provision of an automatic selection of adaptive gain and adaptation rate. To get rid of this problem and for the automatic selection of adaptive gain, a fuzzy-based scheme is presented in this article. In the proposed fuzzy-based technique, the controller output gain is illustrated as the function of input process parameters, which is continuously amended for any process parameter variations. A set-point modulation scheme is also incorporated to tackle the undesired process parameter variations and to improve performance indices of the process under control. The performance of the proposed set-point modulated fuzzy-based model reference adaptive controller (SFMRAC) is demonstrated on different second order linear, marginally stable and nonlinear models. The scheme is also explored on a real-time twin arm overhead crane for transport of material without pendulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Natural Computing Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.