Abstract

Electric vehicles (EVs) are considered as the leading-edge form of mobility. However, the integration of electric vehicles with charging stations is a contentious issue. Managing the available grid power and bus voltage regulation is addressed through renewable energy. This work proposes a grid-connected photovoltaic (PV)-powered EV charging station with converter control technique. The controller unit is interfaced with the renewable energy source, bidirectional converter, and local energy storage unit (ESU). The bidirectional converter provides a regulated output with a fuzzy logic controller (FLC) during charging and discharging. The fuzzy control is implemented to maintain a decentralized power distribution between the microgrid DC-link and ESU. The PV coupled to the DC microgrid of the charging station is variable in nature. Hence, the microgrid-based charging is examined under a range of realistic scenarios, including low, total PV power output and different state of charge (SOC) levels of ESU. In order to accomplish the effective charging of EV, a decentralized energy management system is created to control the energy flow among the PV system, the battery, and the grid. The proposed controller’s effectiveness is validated using a simulation have been analyzed using MATLAB under various microgrid situations. Additionally, the experimental results are validated under various modes of operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call