Abstract
Conventional Noise Clustering (NC) algorithms do not consider any spatial information in the image. In this study, three algorithms have been presented, Noise Local Information c-means (NLICM) and Adaptive Noise Local Information c-Means (ADNLICM), which use NC as the base classifier, and Noise Clustering with constraints (NC_S), which incorporates spatial information into the objective function of the NC classifier. These algorithms enhance the performance of classification by minimizing the effect of noise and outliers. The algorithms were tested on two study areas, Haridwar (Uttarakhand) and Banasthali (Rajasthan) in India. All three algorithms were examined using different parameters (distance measures, fuzziness factor, and δ). An analysis determined that the ADNLICM algorithm with Bray–Curtis distance measures, fuzziness factor m = 1.1, and δ = 106, outperformed the other algorithm and achieved 91.53% overall accuracy. The optimized algorithm returned the lowest variance and RMSE for both study areas, demonstrating that the optimized algorithm works for different satellite images. The optimized technique can be used to categorize images with noisy pixels and heterogeneity for various applications, such as mapping, change detection, area estimation, feature recognition, and classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.