Abstract

Multi-hop broadcasting in Vehicular Ad Hoc Network (VANET) is the basic building block for renovating on-road travel experiences because it supports message dissemination among a large number of travelers in real-time. In order to make forwarding decisions, 1-hop neighbor table is suggested to be maintained at each vehicle by exchanging beacon packets on a periodic basis. However, a network crowded with both data packets and beacons gives rise to broadcast storms, resulting in insignificant resource consumption. Therefore, a beaconless approach would be a better solution that can control packet flow throughout the network, owing to minimizing packet collision and drop rate. Some recent literature that does not rely on beacon information broadcasts ample amounts of data packets, promoting wastage of bandwidth. To handle such issues, a Fuzzy-based Beaconless Probabilistic Broadcasting Algorithms (FBBPA) is proposed to notify vehicles about an event in less broadcasting. It is a receiver oriented broadcast suppression technique, where the forwarding probability of the packets in vehicles’ buffer is decided on the basis of their distance, angular orientation, movement direction and buffer load delay. The resultant probability is used to reschedule the packet. Among all the packets in the vehicle's buffer, the one having the highest priority at an instant is broadcasted first. For accident and advertisement packets, the analysis through simulation reveals that the proposed algorithm outperformed the compared protocols in terms of reachability (Information coverage), average delay and saved rebroadcast.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.