Abstract

Fuzzy based soft classification have been used immensely for handling the mixed pixel and hence to extract the single class of interest. The present research attempts to extract the moist deciduous forest from MODIS temporal data using the Possibilistic c-Means (PCM) soft classification approach. Temporal MODIS (7 dates) data were used to identify moist deciduous forest and temporal AWiFS (7 dates) data were used as reference data for testing. The Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), and Transformed Normalized Difference Vegetation Index (TNDVI) were used to generate the temporal vegetation indices for both the MODIS and the AWiFS datasets. It was observed from the research that the MODIS temporal NDVI data set1, which contain the minimum number of images and avoids the temporal images corresponding to the highest frequency stages of onset of greenness (OG) and end of senescence (ES) activity of moist deciduous forest have been found most suitable data set for identification of moist deciduous forest with the maximum fuzzy overall accuracy of 96.731 %.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.