Abstract
Quantitative structure-property relationships (QSPRs) for estimating the logarithm octanol/water partition coefficients, logK(ow), at 25 degrees C were developed based on fuzzy ARTMAP and back-propagation neural networks using a heterogeneous set of 442 organic compounds. The set of molecular descriptors were derived from molecular connectivity indices and quantum chemical descriptors calculated from PM3 semiempirical MO-theory. Quantum chemical input descriptors include average polarizability, dipole moments, exchange energy, total electrostatic interaction energy, total two-center energy, and ionization potential. The fuzzy ARTMAP/QSPR performed, for a logK(ow) range of -1.6 to 7.9, with average absolute errors of 0.03 and 0.14 logK(ow) for the overall data and test sets, respectively. The optimal 12-11-1 back-propagation/QSPR model, for the same range of logK(ow), exhibited larger average absolute errors of 0.23 and 0.27 logK(ow) for the test and validation data sets, respectively, over the same range of logK(ow) values. The present results with the fuzzy ARTMAP-based QSPR are encouraging and suggest that high performance logK(ow) QSPR that encompasses a wider range of chemical groups could be developed, following the present approach, by training with a larger heterogeneous data set.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Chemical Information and Computer Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.