Abstract
This paper conducts a new study on fuzzy approximation-based reparametrization and adaptive control design of non-canonical nonlinear aircraft dynamics, with particular focus on emphasizing the expansion of linearization-based adaptive flight control designs from local to semi-global scopes. The linearization-based adaptive control method has been employed for managing non-canonical nonlinear aircraft systems, owing to its capability in handling the complexity of aircraft system dynamics. To enhance the operational range of the linearization-based approach, this paper focuses on the aircraft longitudinal dynamic model in general non-canonical forms. A semi-global linearization-based adaptive control method is developed for this kind of system. Firstly, a new reparametrization is devised, leveraging local linearized models and a concept of relative degree. Subsequently, adaptive controllers are designed to guarantee stable and asymptotic output tracking for aircraft systems with various relative degrees. The efficiency of the newly developed adaptive control approach is validated through simulation outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.