Abstract
In this paper, an adaptive fuzzy optimal control design is addressed for a class of unknown nonlinear discrete-time systems. The controlled systems are in a strict-feedback frame and contain unknown functions and nonsymmetric dead-zone. For this class of systems, the control objective is to design a controller, which not only guarantees the stability of the systems, but achieves the optimal control performance as well. This immediately brings about the difficulties in the controller design. To this end, the fuzzy logic systems are employed to approximate the unknown functions in the systems. Based on the utility functions and the critic designs, and by applying the backsteppping design technique, a reinforcement learning algorithm is used to develop an optimal control signal. The adaptation auxiliary signal for unknown dead-zone parameters is established to compensate for the effect of nonsymmetric dead-zone on the control performance, and the updating laws are obtained based on the gradient descent rule. The stability of the control systems can be proved based on the difference Lyapunov function method. The feasibility of the proposed control approach is further demonstrated via two simulation examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.