Abstract
AbstractFuzzy answer set programming (FASP) combines two declarative frameworks, answer set programming and fuzzy logic, in order to model reasoning by default over imprecise information. Several connectives are available to combine different expressions; in particular the Gödel and Łukasiewicz fuzzy connectives are usually considered, due to their properties. Although the Gödel conjunction can be easily eliminated from rule heads, we show through complexity arguments that such a simplification is infeasible in general for all other connectives. The paper analyzes a translation of FASP programs into satisfiability modulo theories (SMT), which in general produces quantified formulas because of the minimality of the semantics. Structural properties of many FASP programs allow to eliminate the quantification, or to sensibly reduce the number of quantified variables. Indeed, integrality constraints can replace recursive rules commonly used to force Boolean interpretations, and completion subformulas can guarantee minimality for acyclic programs with atomic heads. Moreover, head cycle free rules can be replaced by shifted subprograms, whose structure depends on the eliminated head connective, so that ordered completion may replace the minimality check if also Łukasiewicz disjunction in rule bodies is acyclic. The paper also presents and evaluates a prototype system implementing these translations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.