Abstract

We are concerned with the fuzzy stochastic differential equations driven by multidimensional Brownian motion viewed as a tool used to describe the behavior of dynamic systems operating in fuzzy environments with stochastic noises. Under the uniform Lipschitz condition, we prove the local uniqueness theorem for the solutions of fuzzy stochastic differential equations. Next we show, assuming the Lipschitz condition is satisfied only locally, that these equations have a unique solution. The fact that the solution is bounded is also proved. We conclude the paper with a number of corresponding results holding for the deterministic fuzzy differential equations and set-valued stochastic differential equations with local Lipschitz condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.