Abstract
The global demand for stored and processed data has surged due to the development of IoTs and similar computational structures, which has led to further energy consumption by concentrated data storage facilities and thus the demands of global energy and environmental needs. The current paper introduces Fuzzy Allocation Optimization Algorithm to mitigate energy consumption in high storage density settings. It uses the principles of Fuzzy logic to determine the best way to assign the tasks in relation to storage density necessity, urgency and energy consumption. Thus, the proposed approach incorporates fuzzy inference systems with multi-objective optimization methods where location of storage is dynamically assessed and assigned according to energy efficiency parameters. The findings of the simulation and case study prove that the algorithm is successful in saving energy while at the same time lowering storage I/O response time, which provides a viable solution to energy issues in evolving data centres. This work satisfies the lack of energy efficient algorithms in high density storage areas and responds to the recent calls for green technology and smart utilization of resources in the energy field. The findings are used in the promotion of significant IT infrastructures towards developing the next generation of energy efficient data centers with respect to Future Internet and evolving energy web environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.