Abstract

This study proposes a new fuzzy adaptive Charged System Search (CSS) for global optimization. The suggested algorithm includes a parameter tuning process based on fuzzy logic with the aim of improving its performance. In this regard, four linguistic variables are defined which configures a fuzzy system for parameter identification of the standard CSS algorithm. This process provides a focus for the algorithm on higher levels of global searching in the initial iterations while the local search is considered in the last iterations. Twenty mathematical benchmark functions, the Competitions on Evolutionary Computation (CEC) regarding CEC 2020 benchmark, three well-known constrained, and two engineering problems are utilized to validate the new algorithm. Moreover, the performance of the new algorithm is compared and contrasted with other metaheuristic algorithms. The obtained results reveal the superiority of the proposed approach in dealing with different unconstraint, constrained, and engineering design problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.