Abstract

This paper proposes a novel robust attitude estimation algorithm for a small unmanned aerial vehicle (UAV) in the absence of GPS measurements. A synthetic sideslip angle (SSA) measurement formulated for use under the zeroangle assumption is newly proposed for a UAV without angle-of-attack (AOA)/SSA sensors to enhance the state estimation performance during a GPS outage. In addition, the nongravitational acceleration is estimated using the proposed Kalman filter and is then subtracted from the raw acceleration to yield a reliable gravity estimate. Then, a fuzzy-logic-aided adaptive measurement covariance matching algorithm is devised to adaptively reduce the weight given to disturbed acceleration and magnetic field measurements in the attitude estimation, yielding the fuzzy adaptive error-state Kalman filter (FAESKF) algorithm. Experimental flight results demonstrate that the proposed FAESKF algorithm achieves a remarkable improvement in attitude estimation compared to the conventional algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.