Abstract
Image enhancement is a basic requirement for any computer vision application for further processing of an image. A common limitation with most of the existing methods, when applied to nearly invisible images, is the loss of color details during the enhancement process. So, a fuzzy c-means clustering-based method for image enhancement is proposed which enhances the perceptually invisible image along with preserving its color and naturalness. In this method, the image pixels are grouped into different clusters and are assigned membership values to those clusters. Based on this membership value, its intensity level is modified in the spatial domain. Modification of the gray levels proportional to the membership values leads to the stretching of the image histogram, similar in shape, to the original histogram. The process results in a very small shift in the mean intensity which preserves the color and brightness-related information of the image. The method enhances the image contrast and maintains the naturalness without introducing any artifacts. The simulation results on standard datasets reflect that the proposed algorithm is superior to many state-of-the-art and traditional methods for perceptually invisible images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.