Abstract

Fuzzification of the analytic hierarchy process (AHP) is of great interest to researchers since it is a frequently used method for coping with complex decision making problems. There have been many attempts to fuzzify the AHP. We focus particularly on the construction of fuzzy pairwise comparison matrices and on obtaining fuzzy weights of objects from them subsequently. We review the fuzzification of the geometric mean method for obtaining fuzzy weights of objects from fuzzy pairwise comparison matrices. We illustrate here the usefulness of the fuzzified AHP on a real-life problem of the evaluation of quality of scientific monographs in university environment. The benefits of the presented evaluation methodology and its suitability for quality assessment of R&D results in general are discussed. When the task of quality assessment in R&D is considered, an important role is played by peer-review evaluation. Evaluations provided by experts in the peer-review process have a high level of subjectivity and can be expected in a linguistic form. New decision-support methods (or adaptations of classic methods) well suited to deal with such inputs, to capture the consistency of experts’ preferences and to restrict the subjectivity to an acceptable level are necessary. A new consistency condition is therefore defined here to be used for expertly defined fuzzy pairwise comparison matrices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call