Abstract

In this paper, a fuzzy agglomerative (FuzAg) approach is proposed for community detection that iteratively updates membership degree of nodes. Earlier approaches assign membership degree to nodes based on communities only. We introduce the notion of self-membership in addition to the membership of different communities. The essence of self-membership is to give opportunity to all nodes in growing their own community. Nodes having higher self-membership degree are referred as anchors , and they get a chance to expand their associated community. Meanwhile, some new anchors may emerge in successive iterations, whereas false or redundant anchors get removed. The time complexity of the proposed algorithm is shown to be $O(n^2)$ . We compare the results of the proposed FuzAg algorithm with those of state-of-the-art fuzzy community detection algorithms on ten real-world datasets as well as on synthetic networks. Results indicated by various quality and accuracy metrics show impressive performance of FuzAg in identifying both disjoint communities and fuzzy communities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.