Abstract

Abstract. One of the key questions in the air quality and climate sciences is how tropospheric ozone concentrations will change in the future. This will depend on two factors: changes in stratosphere-to-troposphere transport (STT) and changes in tropospheric chemistry. Here we aim to identify robust changes in STT using simulations from the Chemistry Climate Model Initiative (CCMI) under a common climate change scenario (RCP6.0). We use two idealized stratospheric tracers to isolate changes in transport: stratospheric ozone (O3S), which is exactly like ozone but has no chemical sources in the troposphere, and st80, a passive tracer with fixed volume mixing ratio in the stratosphere. We find a robust increase in the tropospheric columns of these two tracers across the models. In particular, stratospheric ozone in the troposphere is projected to increase 10 %–16 % by the end of the 21st century in the RCP6.0 scenario. Future STT is enhanced in the subtropics due to the strengthening of the shallow branch of the Brewer–Dobson circulation (BDC) in the lower stratosphere and of the upper part of the Hadley cell in the upper troposphere. The acceleration of the deep branch of the BDC in the Northern Hemisphere (NH) and changes in eddy transport contribute to increased STT at high latitudes. These STT trends are caused by greenhouse gas (GHG) increases, while phasing out of ozone-depleting substances (ODS) does not lead to robust transport changes. Nevertheless, the decline of ODS increases the reservoir of ozone in the lower stratosphere, which results in enhanced STT of O3S at middle and high latitudes. A higher emission scenario (RCP8.5) produces stronger STT trends, with increases in tropospheric column O3S more than 3 times larger than those in the RCP6.0 scenario by the end of the 21st century.

Highlights

  • Ozone is most abundant in the stratosphere, and its presence is crucial for protecting life on Earth from harmful solar ultraviolet radiation

  • The O3S and st80 trend patterns highlight common features in all models, and we investigate the transport changes that lead to these trends in the stratospheric tracers

  • In this study we investigated the future trends in stratosphere–troposphere exchange (STE), with a specific focus on stratosphere-to-troposphere transport (STT), using output from various models participating in Chemistry Climate Model Initiative (CCMI) in order to extract robust signals

Read more

Summary

Introduction

Ozone is most abundant in the stratosphere, and its presence is crucial for protecting life on Earth from harmful solar ultraviolet radiation. The enhancement of STT is generally attributed to the acceleration of the Brewer–Dobson circulation (BDC), which is predicted consistently by climate model simulations in response to increasing greenhouse gases (Butchart and Scaife, 2001) This enhanced circulation leads to stronger downwelling and to accumulation of ozone in the extratropical lowermost stratosphere, often referred to as the “middle world”, thereby increasing the ozone reservoir available for transport into the troposphere. The amount of stratospheric tracer (e.g., ozone) transported into the troposphere will depend on the frequency of cross-tropopause irreversible transport events, as well as on the concentration in the lower stratosphere reservoir (Albers et al, 2017) The latter is controlled by changes in the BDC, in addition to chemical production and loss in the “middle world”.

Data and method
Time series of tracer concentrations
Spatial structure of the tracer trends
Trends in TEM transport terms
Dependence on emission scenario
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.