Abstract

Integration consideration of end-point reproductions like molten slag waste heat high-efficiently recovery and resourceful disposal has a significant influence on establishing more economical and environmental wastes circular network system, due to 0.75billiontonne metallurgical slag with nearly 1500 °C is produced annually, corresponding to 40milliontonne coal theoretically calculated by 100% heat recovery. In this review, the technologies’ limitations and their priorities of prevailing heat recovery processes including physical or chemical methods through evaluating the key parameters such as heat recovery rate and granulation performance were discussed. Physical methods like centrifugal granulation have a recovery rate of less than 65% except for better slag particle diameter, and the heat only in the high-temperature range can be recovered efficiently. By contrast, chemical methods have a better heat recovery rate through combustible gas preparation based on slag catalysis, but slag granulation performance cannot be guaranteed. Thus, the collaboration of physical and chemical methods like slag granulation-coal gasification system was proposed, which had an ingenious integration of energy cascade recovery at a wider temperature range, combustible gas preparation like hydrogen and slag granulation. However, this process will consume a great quantity of fossil fuel and emerge some other dangers to the environment, therefore, a cleaner routine of molten slag-waste plastics system was proposed for triple targets above on the premise of carbon dioxide storage and sequestration, which will provide a smart strategy for terminal energy conservation and establishing more economical and environmental wastes circular network system in steelmaking plant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.