Abstract

This paper analyzes the future trends of both solar and non-solar-powered electric types of unmanned aerial vehicle (UAV). The impacts of solar cell efficiency and battery energy density on the potential of reducing the maximum take-off and payload enhancement for both types of UAV are studied. The battery energy density and solar efficiency’s extrapolated forecast data do not show any sign of technology maturation. Component weight, ratio of solar module to wing area, and solar module power are also analyzed to further emphasize the need to improve the solar and battery technology for the development of solar-powered electric UAVs. Results show that a solar-powered electric UAV should be lighter, smaller, and be able to carry more payload than a non-solar-powered electric UAV in the near future depending on the payload and endurance requirement. Thus, a solar-powered aircraft can be the future of aviation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call