Abstract

Climate change may modify environmental conditions creating suitable environments for phytopathogen vectors in places that were not suitable before. The present study aimed to contrast current and future spatial distribution of Diaphorina citri in Mexico under two climate change scenarios, Shared Socioeconomic Pathways (SSP) 4.5 and 8.5 for years 2050 and 2070. Non-correlated bioclimatic variables from eight General Circulation Models derived from the Coupled Model Intercomparison Project-6 and presence point data were used to generate distribution models with MaxEnt. Future projections showed that current suitable areas, equivalent to a 38.6% of coverage persist across all scenarios, new suitability areas appear, and no reduction is expected. All the models coincide on a potential increase in relation to the current national distribution of 11.1, 14.8, 13.8 and 25.5% for SSP2 4.5–50 SSP2 4.5–70 SSP5 8.5–50, and SSP5 8.5–70 respectively. Most of the new areas are not currently dedicated to citriculture; however, an increase in the risk of Huanglongbing is expected because most of the new areas are contiguous to the current presence areas, and cover urban zones where there may exist rutaceous hosts, from which the vector may spread the disease to the production zones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call