Abstract

In order to promote sustainable production by using secondary raw material from existing material stocks, complementary to primary raw material, information about the future availability of secondary resources constitutes a prerequisite. In this study, a dynamic material flow model of historic aluminium (Al) flows in Austria is combined with forecasts on future Al consumption to estimate the development of old scrap generation and in-use stocks until 2050. In-use stocks are estimated to increase by 60 % to 515 kg/cap. by 2050 assuming a scenario of moderate economic growth. Old scrap generation in 2050 would thereby more than double (up to 30 kg/cap.) in comparison to the 2010 amounts. Despite this substantial increase in old scrap generation, industrial self-supply from old scrap will probably not exceed 20 %, and final consumption self-supply of Al will not exceed 40 % given present conditions. Opportunities and limits of increasing self-supply through higher collection rates and lower scrap export levels are investigated in this study as the European Raw Material Initiative considers enhanced recycling to be a key measure to ensure future resource supply. Based on these analyses, a self-sustaining Al supply from post-consumer Al is not expected if current trends of Al usage continue. Therefore, comprehensive resource policy should be based on a profound understanding of the availability of primary and secondary resources potentials and their dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.