Abstract

Traditional analysis of distribution network tariff design assumes a lack of alternatives to grid connection for the fulfilment of consumers' electricity needs. This is radically changing with breakthroughs in two technologies: (1) Photovoltaics (PV) enable domestic and commercial consumers to self-produce energy; (2) Batteries allow consumers and self-producers to gain control over their grid energy and capacity parameters. Contributing to the state of the art, the grid cost recovery problem for the Distribution System Operator (DSO) is modelled as a non-cooperative game between consumers. In this game, the availability and costs of the two named technologies strategically interact with tariff structures. Four states of the world for user's access to technologies are distinguished and three tariff structures are evaluated. The assessed distribution network tariff structures are: energy volumetric charges with net-metering, energy volumetric charges for both injection and withdrawal, and capacity-based charges. Results show that in a state of the world with new technology choices for grid users both efficiency and equity issues can arise when distribution network charges are ill-designed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.