Abstract
Indian summer monsoon rainfall extremes and their changing characteristics under global warming have remained a potential area of research and a topic of scientific debate over the last decade. This partially attributes to multiple definitions of extremes reported in the past studies and poor understanding of the changing processes associated with extremes. The later one results into poor simulation of extremes by coarse resolution General Circulation Models under increased greenhouse gas emission which further deteriorates due to inadequate representation of monsoon processes in the models. Here we use transfer function based statistical downscaling model with non-parametric kernel regression for the projection of extremes and find such conventional regional modeling fails to simulate rainfall extremes over India. In this conjuncture, we modify the downscaling algorithm by applying a robust regression to the gridded extreme rainfall events. We observe, inclusion of robust regression to the downscaling algorithm improves the historical simulation of rainfall extremes at a 0.25° spatial resolution, as evaluated based on classical extreme value theory methods, viz., block maxima and peak over threshold. The future projections of extremes during 2081–2100, obtained with the developed algorithm show no change to slight increase in the spatial mean of extremes with dominance of spatial heterogeneity. These changing characteristics in future are consistent with the observed recent changes in extremes over India. The proposed methodology will be useful for assessing the impacts of climate change on extremes; specifically while spatially mapping the risk to rainfall extremes over India.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.