Abstract

Abstract The study is conducted to examine the climate change impact on rice Crop Water Requirement (CWR) and Net Irrigation Requirement (NIR) using the NASA Earth Exchange Global Daily Downscaled Projection (NEX-GDDP) coupled with the CROPWAT 8.0 model. The maximum temperature (Tmax), minimum temperature (Tmin), and rainfall projections for the baseline (years 1981–2015) and future (years 2030 and 2040) under Representative Concentration Pathway (RCP) 4.5 were derived from NEX-GDDP. To reduce the bias, linear scaling (LS) and the modified difference approach (MDA) were employed. Results show that LS performed better than the MDA along with improved statistical measures such as mean (μ), standard deviation (σ), and percent bias (Pbias), in the case of Tmax and Tmin (μ = 31.14 and 19.63 °C, σ = 5.75 and 6.78 °C, Pbias = 1.43 and 0.33%), followed by rainfall (μ = 2.67 mm, σ = 4.94 mm, and Pbias = 2.4%). The future climatic projections showed an increasing trend in both Tmax and Tmin, which are expected to increase by 1.7 °C by 2040. This would cause an increased range of 1.2 and 2% in 2030 and 2040, respectively. Due to a wide variation in effective rainfall (Peff), NIR could increase by 4 and 9% in 2030 and 2040, respectively. The above results may help formulate adaptation measures to alleviate the impacts of climate change on rice production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.