Abstract

Many countries consider Urban Air Mobility (UAM) a new mode of transportation for intra-regional short-distance journeys. The system is one of the upcoming on-demand airborne transportation networks and includes drone taxis and personal air vehicles. The primary purpose of the UAM concept is to use electric vertical take-off and landing (eVTOL) vehicles to identify passenger locations, fly and cruise, load the passengers, and deliver them to their destinations. UAM system is a currently evolving field, and multiple concepts such as multi-copter concepts, Lift and Cruise concepts, and Tilt-Wing concepts are being proposed. The behavior of each concept vehicle, and hence its energy efficiency, varies. Using low-altitude airspace, UAM is intended to provide an innovative transportation model for passengers and goods in metropolitan areas with significantly increased mobility. Ground infrastructure incorporating vertiports, regulations, policies, and other vital components, is required to transform UAM from design to operation. Electric flight is thought to be the next step toward more environmentally sustainable air travel. In the present study, a personal air vehicle (PAV) based eVTOL concept is proposed for UAM. The preliminary design and modelling of PAV are discussed here. The aerodynamic performance of propeller characteristics used in PAV design is compared using numerical and experimental studies. The results show that at different velocities, the normal and side forces generated by the propellers are found to be more stable in PAV cruise mode/ forward flight mode, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call