Abstract
Abstract An integrated picture of the future changes in the water cycle is provided focusing on the global land monsoon (GLM) region, based on multimodel projections under the representative concentration pathway 8.5 (RCP8.5) from phase 5 of the Coupled Model Intercomparison Project (CMIP5). We investigate the reservoirs (e.g., precipitable water, soil moisture) and water fluxes (e.g., precipitation P, evaporation E, precipitation minus evaporation P − E, and total runoff) of the water cycle. The projected intensification of the water cycle with global warming in the GLM region is reflected in robust increases in annual-mean P (multimodel median response of 0.81% K−1), E (0.57% K−1), P − E (1.58% K−1), and total runoff (2.08% K−1). Both surface (−0.83% K−1) and total soil moisture (−0.26% K−1) decrease as a result of increasing evaporative demand. Regionally, the Northern Hemispheric (NH) African, South Asian, and East Asian monsoon regions would experience an intensified water cycle, as measured by the coherent increases in P, P − E, and runoff, while the NH American monsoon region would experience a weakened water cycle. Changes in the monthly fields are more remarkable and robust than in the annual mean. An enhanced annual cycle (by ~3%–5% K−1) with a phase delay from the current climate in P, P − E, and runoff is projected, featuring an intensified water cycle in the wet season while little changes or slight weakening in the dry season. The increased seasonality and drier soils throughout the year imply increasing flood and drought risks and agricultural yields reduction. Limiting global warming to 1.5°C, the low warming target set by the Paris Agreement, could robustly reduce additional hydrological risks from increased seasonality as compared to higher warming thresholds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.