Abstract
COVID-19 is a pandemic respiratory illness. The disease spreads from human to human and is caused by a novel coronavirus SARS-CoV-2. In this study, we formulate a mathematical model of COVID-19 and discuss the disease free state and endemic equilibrium of the model. Based on the sensitivity indexes of the parameters, control strategies are designed. The strategies reduce the densities of the infected classes but do not satisfy the criteria/threshold condition of the global stability of disease free equilibrium. On the other hand, the endemic equilibrium of the disease is globally asymptotically stable. Therefore it is concluded that the disease cannot be eradicated with present resources and the human population needs to learn how to live with corona. For validation of the results, numerical simulations are obtained using fourth order Runge–Kutta method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.