Abstract
Understanding the future environmental impacts of lithium-ion batteries is crucial for a sustainable transition to electric vehicles. Here, we build a prospective life cycle assessment (pLCA) model for lithium-ion battery cell production for 8 battery chemistries and 3 production regions (China, US, and EU). The pLCA model includes scenarios for future life cycle inventory data for energy and key materials used in battery cell production. We find that greenhouse gas (GHG) emissions per kWh of lithium-ion battery cell production could be reduced from 41 to 89 kg CO2-Eq in 2020 to 10–45 kg CO2-Eq in 2050, mainly due to the effect of a low-carbon electricity transition. The Cathode is the biggest contributor (33%-70%) of cell GHG emissions in the period between 2020 and 2050. In 2050, LiOH will be the main contributor to GHG emissions of LFP cathodes, and Ni2SO4 for NCM/NCA cathodes. These results promote discussion on how to reduce battery GHG emissions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.