Abstract

AbstractIn recent decades, global warming has been an indisputable fact. The increase in extreme events accompanied by the rise in temperature has huge influences on many aspects of the society and economy globally. As a result, forecasting how global temperatures will change and evolve in the future is crucial, but it is restricted by the accuracy and uncertainty of model simulations. Based on ensemble empirical mode decomposition (EEMD) method, this study first evaluates the performance of the CMIP6 models in simulating different timescale components including high‐frequency components (HFC), low‐frequency components (LFC), and secular trend (ST) of surface air temperature (SAT). The results show that the performance of the CMIP6 models in simulating the ST is better. Following the observation constraint method's correction of CMIP6 model simulations, we investigate the evolution characteristics of future temperature secular trends under different Shared Socioeconomic Pathway (SSP) scenarios. The results show that under SSP245 scenario, the rise of SAT first appeared in northwest and east North America and eastern Europe. The spatial distribution of evolution characteristic under the SSP585 scenario is similar to that of the SSP245 scenario but with a larger magnitude. However, more pronounced differences appear in warming rate, which shows a downward trend over time under the SSP245 scenario and an upward trend with time under the SSP585 scenario.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call